ریاضی: تفاوت بین نسخه‌ها

از دانشنامه‌ی اسلامی
پرش به ناوبری پرش به جستجو
(ایجاد)
سطر ۱: سطر ۱:
{{نیازمند ویرایش فنی}}
+
علم ریاضی؛ علمی است که از اموری بحث می کند که فقط در وجود خارجی محتاج به [[ماده]] باشند، چنانچه مقدار اعداد خاص که موجود در مادیات است. و اصول این علم چهار است: علم [[هندسه]] و [[علم عدد]] و علم [[نجوم]] و [[علم موسیقی]].
  
علم ریاضی ؛ علمی است که از اموری بحث میکند که فقط در وجود خارجی محتاج به [[ماده]] باشند، چنانچه مقدار اعداد خاص که موجود در مادیات است . و اصول این علم چهار است : علم [[هندسه]] و [[علم عدد]] و علم [[نجوم]] و [[علم موسیقی]] . و فروع آن چون [[علم مناظر و مرایا]] و [[علم جبر و مقابله]] و [[علم جراثقال]]. (از غیاث اللغات ) (از آنندراج ). علم اندازه و ترتیب . علم خواص کمیت بطور مطلق.<ref> لغت نامه دهخدا، ذیل واژه علم
+
و فروع آن چون [[علم مناظر و مرایا]] و [[علم جبر و مقابله]] و [[علم جراثقال]]. (از غیاث اللغات) (از آنندراج). علم اندازه و ترتیب. علم خواص کمیت به طور مطلق.<ref>لغت نامه دهخدا، ذیل واژه علم.</ref>
</ref>
 
  
==ریاضیات در بین مسلمانان<ref> علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌، ص 35 تا 37 </ref>==
+
==ریاضیات در بین مسلمانان<ref>علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌، ص 35 تا 37.</ref>==
در جريان نهضت ترجمه، آثار بسيارى از رياضى‌دانان يونانى به عربى برگردانده شد و به‌سرعت رياضى‌دانان اسلامى از سطوح دانسته‌هاى رياضى‌دانان يونان گذشتند، بر آثار آنان شرحهاى بسيارى نوشتند و بسيارى از دانسته‌هاى آنان را توسعه بخشيدند. مهم‌ترين اثر رياضى به زبان يونانى كه در اين دوران به عربى ترجمه شد و بر آن شرحهاى بسيارى نوشته شد كتاب اصول نوشته اقليدس بود. اما اين مهم‌ترين نقش رياضى‌دانان مسلمان در تكوين دانش رياضى نبود. نقش دَرهم‌آميزنده رياضيات اسلامى بين مكتبهاى رياضى شرق و غرب، يعنى بين رياضيات يونان و هند، از ارزنده‌ترين دستاوردهاى رياضيات اسلامى براى نوع بشر به حساب مى‌آمد. اين نقش بسيار مهم رياضيات اسلامى بود كه توانست دانسته‌هاى رياضيات هندسى، و از همه مهم‌تر، شيوه عددنويسى دهدهى را با ديگر مفاهيم رياضى طرح شده در يونان در هم آميزد و از آن صورت واحدى در آورد و به غرب ارائه دهد. با آنكه رياضيات يونانى در چند شاخه، ازجمله مثلثات و علم كُره‌ها، پيشرفت فراوانى كرده بود، اما نبود يك روش عددنويسى ساده مانع پيشرفت علم اعداد در يونان شده بود. به طور كلى دستاوردهاى رياضى‌دانان اسلامى را در شاخه‌هاى گوناگون دانش رياضيات چنين مى‌توان عنوان كرد: اصلاح دستگاه عددنويسى هندى با تكميل حساب دستگاه اعشارى آن، ازجمله ابداع كسرهاى اعشارى؛ به‌وجود آوردن مفاهيم جديد در تئورى اعداد؛ به‌وجودآوردن علم جبر؛ كشفيات مهم و جديد در دانش مثلثات و نيز علم كره‌ها و ابداع روشهاى گوناگون براى يافتن پاسخهاى عددى معادلات درجه دو و سه. مسلمانان از طريق كتاب محمدبن موسى خوارزمى با نام الجمع و التفريق بالحساب الهند با شيوه عددنويسى هندى آشنا شدند. اين كتاب خوارزمى كهن‌ترين كتابى است كه درباره علم حساب در عالم اسلام نوشته شده است. امروزه فقط ترجمه لاتين آن باقى مانده است. نقش خوارزمى را از اين ديد نيز بايد بررسى كرد كه اين كتاب نخستين كتاب حساب نيز هست كه از عربى به لاتين ترجمه شد و مغرب زمين كنونى در علوم مربوط به رياضيات و رايانه، براى نشان دادن هر روش معين در محاسبه پديده‌ها، اسم خوارزمى را به شكل تحريف‌شده آن، يعنى به صورت «الگوريتم» به آن اطلاق مى‌كند.
 
  
خوارزمى در پديدآوردن دانش جبر نيز نقش فراوانى داشت. اگرچه پيش از دانشمندان اسلامى موضوع علم جبر در يونان وجود داشت و دانشمندان يونانى بسيارى همچون فيثاغورس، ارشميدس و ديوفانتوس در آثار خود به حل مسائل جبرى نزديك شده بودند، اما دانشمندان مسلمان با كاربرد منطقى و تنقيح آراى دانشمندان يونانى پايه‌گذار اين علم به شمار مى‌آيند. بر اين اساس، علم جبر در نزد دانشمندان اسلامى تعميم اعمال علم حساب به اعداد، و تحقيق در روابط حاكم بين اعداد به حساب آمد، با كاربرد حروف به‌جاى اعداد. مهم‌ترين دستاورد علم جبر نيز به دست آوردن مقادير مجهول به وسيله معادله‌مندكردن اين مقادير و حل اين معادلات بود. بى‌دليل نيست كه نخستين و يكى از مهم‌ترين آثار دانشمندان اسلامى و علم جبر، كتاب محمدبن موسى خوارزمى الجبر و المقابله نام دارد، زيرا در اين نام، روح كلى حاكم بر علم جبر نهفته است كه در آن «جبر» به كار بردن يك جمله منفى در يك طرف معادله براى حل آن و «مقابله» استفاده از جملات مثبت در حل معادلات به حساب مى‌آيد. دانشمندان اسلامى جبر را صورتى علمى داده و آن را به‌صورت يك علم و به روشى علمى مورد بررسى قرار داده‌اند. اين دسته از رياضى‌دانان اسلامى از خوارزمى آغاز و با دستاوردهاى خيام، ماهانى، ابوكامل شجاع‌بن اسلم، ابوالوفاى بوزجانى، خجندى، ابوسهل كوهى و ... ادامه پيدا مى‌كند.
+
در جريان نهضت ترجمه، آثار بسيارى از رياضى‌دانان يونانى به عربى برگردانده شد و به ‌سرعت رياضى‌دانان اسلامى از سطوح دانسته‌هاى رياضى‌دانان يونان گذشتند، بر آثار آنان شرح هاى بسيارى نوشتند و بسيارى از دانسته‌هاى آنان را توسعه بخشيدند. مهم‌ترين اثر رياضى به زبان يونانى كه در اين دوران به عربى ترجمه شد و بر آن شرح هاى بسيارى نوشته شد، كتاب اصول نوشته اقليدس بود.
  
طبقه بندى معادلات جبرى، به‌ويژه معادلات درجه اول و دوم و سوم، يكى از مهم‌ترين گامهاى دانشمندان اسلامى براى منظم كردن علم جبر و تعبير «علم» بخشيدن به آن است. به‌ويژه نقش خيام در حل معادلات درجه سوم، به‌عنوان كسى كه براى نخستين بار به تحقيق در حل اين گونه معادلات پرداخت بسيار درخور توجه است. در عين حال، رياضى‌دانان اسلامى نخستين كسانى نيز بودند كه جبر را به علم هندسه وارد كردند و از طريق معادلات جبرى به حل مسائل هندسى پرداختند.
+
اما اين مهم‌ترين نقش رياضى‌دانان مسلمان در تكوين دانش رياضى نبود. نقش دَرهم‌آميزنده رياضيات اسلامى بين مكتب هاى رياضى شرق و غرب، يعنى بين رياضيات يونان و هند، از ارزنده‌ترين دستاوردهاى رياضيات اسلامى براى نوع بشر به حساب مى‌آمد. اين نقش بسيار مهم رياضيات اسلامى بود كه توانست دانسته‌هاى رياضيات هندسى و از همه مهم‌تر، شيوه عددنويسى دهدهى را با ديگر مفاهيم رياضى طرح شده در يونان در هم آميزد و از آن صورت واحدى درآورد و به غرب ارائه دهد.
  
تأثير و عمق نفوذ نقش رياضيات اسلامى در تبيين دانش جبر در مغرب زمين، بيش از هر چيز، بر اساس اطلاق اين نام (جبر) در غرب پيداست. جبر در غرب، صورت لاتين‌شده نام عربى آن، ناميده مى‌شود.<ref> ابوالقاسم قربانى، زندگينامه رياضيدانان دوره اسلامى، تهران، مركز نشر دانشگاهى، 1365، ص 246-/ 238 </ref>
+
با آن كه رياضيات يونانى در چند شاخه، از جمله مثلثات و علم كُره‌ها پيشرفت فراوانى كرده بود، اما نبود يك روش عددنويسى ساده مانع پيشرفت علم اعداد در يونان شده بود. به طور كلى دستاوردهاى رياضى‌دانان اسلامى را در شاخه‌هاى گوناگون دانش رياضيات چنين مى‌توان عنوان كرد: اصلاح دستگاه عددنويسى هندى با تكميل حساب دستگاه اعشارى آن، از جمله ابداع كسرهاى اعشارى؛ به ‌وجود آوردن مفاهيم جديد در تئورى اعداد؛ به‌وجودآوردن علم جبر؛ كشفيات مهم و جديد در دانش مثلثات و نيز علم كره‌ها و ابداع روشهاى گوناگون براى يافتن پاسخ هاى عددى معادلات درجه دو و سه.
  
مدتى پس از خوارزمى، ابوالحسن احمدبن ابراهيم اقليدسى، رياضى‌دان دمشقى الاصل، كسرهاى اعشارى را در كتاب خود درباره رياضيات هندسى، با نام الفصول فى الحساب الهندسى ابداع كرد. يكى ديگر از گامهاى بسيار مهم مسلمين در حوزه علم اعداد طرح اعداد منفى بود. براى نخستين بار در عالم اسلام ابوالوفا بوزجانى در بخش دوم از رساله بسيار مهم خود، كتاب في ما يحتاج اليه‌ الكتّاب و العمّال من علم الحِساب اعداد منفى را ابداع كرد. او براى ناميدن اين اعداد از واژه «دِين» استفاده كرده است.
+
مسلمانان از طريق كتاب محمد بن موسى خوارزمى با نام الجمع والتفريق بالحساب الهند با شيوه عددنويسى هندى آشنا شدند. اين كتاب خوارزمى كهن‌ترين كتابى است كه درباره علم حساب در عالم اسلام نوشته شده است. امروزه فقط ترجمه لاتين آن باقى مانده است. نقش خوارزمى را از اين ديد نيز بايد بررسى كرد كه اين كتاب نخستين كتاب حساب نيز هست كه از عربى به لاتين ترجمه شد و مغرب زمين كنونى در علوم مربوط به رياضيات و رايانه، براى نشان دادن هر روش معين در محاسبه پديده‌ها، اسم خوارزمى را به شكل تحريف‌شده آن يعنى به صورت «الگوريتم» به آن اطلاق مى‌كند.
  
در ديگر بخشهاى دانش رياضى، ازجمله مثلثات و هندسه نيز دانشمندان اسلامى آراى گران‌بهايى از خود به يادگار گذاشتند. در اين بخشها، دانشمندان اسلامى افزون بر بسط روابط حاكم بر مثلثات يونانى، خود به يافته‌هاى جديدى نيز رسيدند، يكى از اين يافته‌ها در كتاب شكل القطاع از خواجه نصيرالدين طوسى متبلور مى‌شود. در اين كتاب، طوسى به‌درستى و زيركى از تقابل دو بخش از علم مثلثات سود جسته است، يكى نقش جدولهاى مثلثاتى در تبديل زوايا و اندازه‌هاى زاويه‌هاى شكلهاى هندسى و ديگر، مفروضات برآمده از مثلثات يونانى. در تبيين شكلهاى هندسى، خواجه در شكل القطاع با استفاده از كوشش دانشمندان پيش از خود در بسط و گسترش جدولهاى مثلثاتى به تبيين بسيار دقيقى از روابط حاكم بر زوايا در اشكال هندسى پرداخته است. نمونه برجسته اين دقت و گسترش مثلثات، به‌ويژه در حوزه علم كره‌ها كه خواجه نصير نيز چند بخش از كتاب شكل القطاع خود را بدان اختصاص داده، تبديل مختصات هندسه سه بعدى به هندسه دو بعدى است. اين كار به‌ويژه در ساخت انواع اصطرلابها حايز اهميت است.<ref> همان، ص 508-/ 486 </ref>
+
خوارزمى در پديدآوردن دانش جبر نيز نقش فراوانى داشت. اگرچه پيش از دانشمندان اسلامى موضوع علم جبر در يونان وجود داشت و دانشمندان يونانى بسيارى همچون فيثاغورس، ارشميدس و ديوفانتوس در آثار خود به حل مسائل جبرى نزديك شده بودند، اما دانشمندان مسلمان با كاربرد منطقى و تنقيح آراى دانشمندان يونانى پايه‌گذار اين علم به شمار مى‌آيند. بر اين اساس، علم جبر در نزد دانشمندان اسلامى تعميم اعمال علم حساب به اعداد و تحقيق در روابط حاكم بين اعداد به حساب آمد، با كاربرد حروف به ‌جاى اعداد. مهم‌ترين دستاورد علم جبر نيز بدست آوردن مقادير مجهول به وسيله معادله‌مندكردن اين مقادير و حل اين معادلات بود.
  
دوره تاريخ رياضيات اسلامى، از سده دوم هجرى تاكنون، رياضى‌دانان بسيارى را به تاريخ علم جهان هديه داده است. سياهه بزرگى از نام اين افراد مى‌توان عرضه كرد، از جمله:
+
بى‌دليل نيست كه نخستين و يكى از مهم‌ترين آثار دانشمندان اسلامى و علم جبر، كتاب محمد بن موسى خوارزمى الجبر والمقابله نام دارد زيرا در اين نام، روح كلى حاكم بر علم جبر نهفته است كه در آن «جبر» بكار بردن يك جمله منفى در يك طرف معادله براى حل آن و «مقابله» استفاده از جملات مثبت در حل معادلات به حساب مى‌آيد.
احمدبن عبداللَّه مروزى، ملقب به «حبش حاسب»، صاحب كتاب فى معرفةالكرة و العمل بها؛ ابوالعباس فضل‌بن حاتم نيريزى، صاحب كتاب مشهور شرح اصول اقليدس؛ موسى‌بن شاكر، يكى از سه برادرى كه به «بنو موسى» مشهورند، صاحب كتاب معرفة مساحةالاشكال البسيطة والكروية؛ ابوالحسن ثابت‌بن قرّه حرّانى، كه آثار متعددى در زمينه رياضيات نوشته است؛ ازجمله كتاب فى الاعداد المتحابّة؛ ابوالفتح محمدبن قاسم اصفهانى، صاحب كتاب تلخيص المخروطات؛ ابوجعفر محمدبن حسين صاغانى خراسانى، صاحب تفسير صدرالمقالة العاشرة من كتاب اقليدس، ابوسعيد احمدبن محمدبن عبدالجليل سجزى، صاحب كتاب فى مساحة الاكَر بالاكر؛ ابوالحسن على‌بن احمد نسوى، صاحب كتاب الاشباع فى شرح الشكل القطاع، ابوحاتم مظفربن اسماعيل اسفزارى، صاحب كتاب اختصار فى اصول اقليدس؛ غياث الدين جمشيد كاشانى، پژوهشگر بسيار مهم و بزرگ و صاحب آثار متعدد ازجمله مفتاح الحساب و رساله محيطيه؛ علاءالدين على‌بن محمد سمرقندى، مشهور به ملاعلى قوشچى، صاحب رساله محمديه؛ و البته بسيارى افراد ديگر كه ذكر نام آنها در اين بخش نمى‌گنجد.
+
 
 +
دانشمندان اسلامى جبر را صورتى علمى داده و آن را به ‌صورت يك علم و به روشى علمى مورد بررسى قرار داده‌اند. اين دسته از رياضى‌دانان اسلامى از خوارزمى آغاز و با دستاوردهاى خيام، ماهانى، ابوكامل شجاع‌ بن اسلم، ابوالوفاى بوزجانى، خجندى، ابوسهل كوهى و... ادامه پيدا مى‌كند.
 +
 
 +
طبقه بندى معادلات جبرى، به ‌ويژه معادلات درجه اول و دوم و سوم، يكى از مهم‌ترين گامهاى دانشمندان اسلامى براى منظم كردن علم جبر و تعبير «علم» بخشيدن به آن است. به‌ويژه نقش خيام در حل معادلات درجه سوم، به ‌عنوان كسى كه براى نخستين بار به تحقيق در حل اين گونه معادلات پرداخت بسيار درخور توجه است. در عين حال، رياضى‌دانان اسلامى نخستين كسانى نيز بودند كه جبر را به علم هندسه وارد كردند و از طريق معادلات جبرى به حل مسائل هندسى پرداختند.
 +
 
 +
تأثير و عمق نفوذ نقش رياضيات اسلامى در تبيين دانش جبر در مغرب زمين، بيش از هر چيز بر اساس اطلاق اين نام (جبر) در غرب پيداست. جبر در غرب، صورت لاتين‌ شده نام عربى آن، ناميده مى‌شود.<ref>ابوالقاسم قربانى، زندگينامه رياضيدانان دوره اسلامى، تهران، مركز نشر دانشگاهى، 1365، ص 246-238.</ref>
 +
 
 +
مدتى پس از خوارزمى، ابوالحسن احمد بن ابراهيم اقليدسى، رياضى‌دان دمشقى الاصل، كسرهاى اعشارى را در كتاب خود درباره رياضيات هندسى، با نام الفصول فى الحساب الهندسى ابداع كرد. يكى ديگر از گامهاى بسيار مهم مسلمين در حوزه علم اعداد طرح اعداد منفى بود. براى نخستين بار در عالم اسلام ابوالوفا بوزجانى در بخش دوم از رساله بسيار مهم خود، كتاب في مايحتاج اليه‌ الكتّاب والعمّال من علم الحِساب اعداد منفى را ابداع كرد. او براى ناميدن اين اعداد از واژه «دِين» استفاده كرده است.
 +
 
 +
در ديگر بخش هاى دانش رياضى، از جمله مثلثات و هندسه نيز دانشمندان اسلامى آراى گران‌بهايى از خود به يادگار گذاشتند. در اين بخش ها، دانشمندان اسلامى افزون بر بسط روابط حاكم بر مثلثات يونانى، خود به يافته‌هاى جديدى نيز رسيدند، يكى از اين يافته‌ها در كتاب شكل القطاع از خواجه نصيرالدين طوسى متبلور مى‌شود.
 +
 
 +
در اين كتاب، طوسى به ‌درستى و زيركى از تقابل دو بخش از علم مثلثات سودجسته است، يكى نقش جدول هاى مثلثاتى در تبديل زوايا و اندازه‌هاى زاويه‌هاى شكل هاى هندسى و ديگر، مفروضات برآمده از مثلثات يونانى. در تبيين شكلهاى هندسى، خواجه در شكل القطاع با استفاده از كوشش دانشمندان پيش از خود در بسط و گسترش جدول هاى مثلثاتى به تبيين بسيار دقيقى از روابط حاكم بر زوايا در اشكال هندسى پرداخته است.
 +
 
 +
نمونه برجسته اين دقت و گسترش مثلثات، به‌ ويژه در حوزه علم كره‌ها كه خواجه نصير نيز چند بخش از كتاب شكل القطاع خود را بدان اختصاص داده، تبديل مختصات هندسه سه بعدى به هندسه دو بعدى است. اين كار به ‌ويژه در ساخت انواع اصطرلابها حايز اهميت است.<ref> همان، ص 508-486.</ref>
 +
 
 +
دوره تاريخ رياضيات اسلامى از سده دوم هجرى تاكنون، رياضى‌دانان بسيارى را به تاريخ علم جهان هديه داده است. سياهه بزرگى از نام اين افراد مى‌توان عرضه كرد، از جمله:
 +
 
 +
احمد بن عبداللَّه مروزى، ملقب به «حبش حاسب»، صاحب كتاب فى معرفةالكرة والعمل بها؛ ابوالعباس فضل ‌بن حاتم نيريزى، صاحب كتاب مشهور شرح اصول اقليدس؛ موسى‌ بن شاكر، يكى از سه برادرى كه به «بنو موسى» مشهورند، صاحب كتاب معرفة مساحةالاشكال البسيطة والكروية؛ ابوالحسن ثابت‌بن قرّه حرانى، كه آثار متعددى در زمينه رياضيات نوشته است؛ از جمله كتاب فى الاعداد المتحابّة؛ ابوالفتح محمد بن قاسم اصفهانى، صاحب كتاب تلخيص المخروطات؛ ابوجعفر محمد بن حسين صاغانى خراسانى، صاحب تفسير صدرالمقالة العاشرة من كتاب اقليدس، ابوسعيد احمد بن محمدبن عبدالجليل سجزى، صاحب كتاب فى مساحة الاكَر بالاكر؛ ابوالحسن على‌ بن احمد نسوى، صاحب كتاب الاشباع فى شرح الشكل القطاع، ابوحاتم مظفر بن اسماعيل اسفزارى، صاحب كتاب اختصار فى اصول اقليدس؛ غياث الدين جمشيد كاشانى، پژوهشگر بسيار مهم و بزرگ و صاحب آثار متعدد از جمله مفتاح الحساب و رساله محيطيه؛ علاءالدين على‌ بن محمد سمرقندى، مشهور به ملا على قوشچى، صاحب رساله محمديه؛ و البته بسيارى افراد ديگر كه ذكر نام آنها در اين بخش نمى‌گنجد.
  
 
==پانویس==
 
==پانویس==
سطر ۲۴: سطر ۳۹:
  
 
==منابع==
 
==منابع==
لغت نامه دهخدا، ذیل واژه علم
+
* لغت نامه دهخدا، ذیل واژه علم
 
+
* علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌
علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌
 
  
 
[[رده:علوم]]
 
[[رده:علوم]]

نسخهٔ ‏۸ آوریل ۲۰۱۳، ساعت ۰۴:۵۸

علم ریاضی؛ علمی است که از اموری بحث می کند که فقط در وجود خارجی محتاج به ماده باشند، چنانچه مقدار اعداد خاص که موجود در مادیات است. و اصول این علم چهار است: علم هندسه و علم عدد و علم نجوم و علم موسیقی.

و فروع آن چون علم مناظر و مرایا و علم جبر و مقابله و علم جراثقال. (از غیاث اللغات) (از آنندراج). علم اندازه و ترتیب. علم خواص کمیت به طور مطلق.[۱]

ریاضیات در بین مسلمانان[۲]

در جريان نهضت ترجمه، آثار بسيارى از رياضى‌دانان يونانى به عربى برگردانده شد و به ‌سرعت رياضى‌دانان اسلامى از سطوح دانسته‌هاى رياضى‌دانان يونان گذشتند، بر آثار آنان شرح هاى بسيارى نوشتند و بسيارى از دانسته‌هاى آنان را توسعه بخشيدند. مهم‌ترين اثر رياضى به زبان يونانى كه در اين دوران به عربى ترجمه شد و بر آن شرح هاى بسيارى نوشته شد، كتاب اصول نوشته اقليدس بود.

اما اين مهم‌ترين نقش رياضى‌دانان مسلمان در تكوين دانش رياضى نبود. نقش دَرهم‌آميزنده رياضيات اسلامى بين مكتب هاى رياضى شرق و غرب، يعنى بين رياضيات يونان و هند، از ارزنده‌ترين دستاوردهاى رياضيات اسلامى براى نوع بشر به حساب مى‌آمد. اين نقش بسيار مهم رياضيات اسلامى بود كه توانست دانسته‌هاى رياضيات هندسى و از همه مهم‌تر، شيوه عددنويسى دهدهى را با ديگر مفاهيم رياضى طرح شده در يونان در هم آميزد و از آن صورت واحدى درآورد و به غرب ارائه دهد.

با آن كه رياضيات يونانى در چند شاخه، از جمله مثلثات و علم كُره‌ها پيشرفت فراوانى كرده بود، اما نبود يك روش عددنويسى ساده مانع پيشرفت علم اعداد در يونان شده بود. به طور كلى دستاوردهاى رياضى‌دانان اسلامى را در شاخه‌هاى گوناگون دانش رياضيات چنين مى‌توان عنوان كرد: اصلاح دستگاه عددنويسى هندى با تكميل حساب دستگاه اعشارى آن، از جمله ابداع كسرهاى اعشارى؛ به ‌وجود آوردن مفاهيم جديد در تئورى اعداد؛ به‌وجودآوردن علم جبر؛ كشفيات مهم و جديد در دانش مثلثات و نيز علم كره‌ها و ابداع روشهاى گوناگون براى يافتن پاسخ هاى عددى معادلات درجه دو و سه.

مسلمانان از طريق كتاب محمد بن موسى خوارزمى با نام الجمع والتفريق بالحساب الهند با شيوه عددنويسى هندى آشنا شدند. اين كتاب خوارزمى كهن‌ترين كتابى است كه درباره علم حساب در عالم اسلام نوشته شده است. امروزه فقط ترجمه لاتين آن باقى مانده است. نقش خوارزمى را از اين ديد نيز بايد بررسى كرد كه اين كتاب نخستين كتاب حساب نيز هست كه از عربى به لاتين ترجمه شد و مغرب زمين كنونى در علوم مربوط به رياضيات و رايانه، براى نشان دادن هر روش معين در محاسبه پديده‌ها، اسم خوارزمى را به شكل تحريف‌شده آن يعنى به صورت «الگوريتم» به آن اطلاق مى‌كند.

خوارزمى در پديدآوردن دانش جبر نيز نقش فراوانى داشت. اگرچه پيش از دانشمندان اسلامى موضوع علم جبر در يونان وجود داشت و دانشمندان يونانى بسيارى همچون فيثاغورس، ارشميدس و ديوفانتوس در آثار خود به حل مسائل جبرى نزديك شده بودند، اما دانشمندان مسلمان با كاربرد منطقى و تنقيح آراى دانشمندان يونانى پايه‌گذار اين علم به شمار مى‌آيند. بر اين اساس، علم جبر در نزد دانشمندان اسلامى تعميم اعمال علم حساب به اعداد و تحقيق در روابط حاكم بين اعداد به حساب آمد، با كاربرد حروف به ‌جاى اعداد. مهم‌ترين دستاورد علم جبر نيز بدست آوردن مقادير مجهول به وسيله معادله‌مندكردن اين مقادير و حل اين معادلات بود.

بى‌دليل نيست كه نخستين و يكى از مهم‌ترين آثار دانشمندان اسلامى و علم جبر، كتاب محمد بن موسى خوارزمى الجبر والمقابله نام دارد زيرا در اين نام، روح كلى حاكم بر علم جبر نهفته است كه در آن «جبر» بكار بردن يك جمله منفى در يك طرف معادله براى حل آن و «مقابله» استفاده از جملات مثبت در حل معادلات به حساب مى‌آيد.

دانشمندان اسلامى جبر را صورتى علمى داده و آن را به ‌صورت يك علم و به روشى علمى مورد بررسى قرار داده‌اند. اين دسته از رياضى‌دانان اسلامى از خوارزمى آغاز و با دستاوردهاى خيام، ماهانى، ابوكامل شجاع‌ بن اسلم، ابوالوفاى بوزجانى، خجندى، ابوسهل كوهى و... ادامه پيدا مى‌كند.

طبقه بندى معادلات جبرى، به ‌ويژه معادلات درجه اول و دوم و سوم، يكى از مهم‌ترين گامهاى دانشمندان اسلامى براى منظم كردن علم جبر و تعبير «علم» بخشيدن به آن است. به‌ويژه نقش خيام در حل معادلات درجه سوم، به ‌عنوان كسى كه براى نخستين بار به تحقيق در حل اين گونه معادلات پرداخت بسيار درخور توجه است. در عين حال، رياضى‌دانان اسلامى نخستين كسانى نيز بودند كه جبر را به علم هندسه وارد كردند و از طريق معادلات جبرى به حل مسائل هندسى پرداختند.

تأثير و عمق نفوذ نقش رياضيات اسلامى در تبيين دانش جبر در مغرب زمين، بيش از هر چيز بر اساس اطلاق اين نام (جبر) در غرب پيداست. جبر در غرب، صورت لاتين‌ شده نام عربى آن، ناميده مى‌شود.[۳]

مدتى پس از خوارزمى، ابوالحسن احمد بن ابراهيم اقليدسى، رياضى‌دان دمشقى الاصل، كسرهاى اعشارى را در كتاب خود درباره رياضيات هندسى، با نام الفصول فى الحساب الهندسى ابداع كرد. يكى ديگر از گامهاى بسيار مهم مسلمين در حوزه علم اعداد طرح اعداد منفى بود. براى نخستين بار در عالم اسلام ابوالوفا بوزجانى در بخش دوم از رساله بسيار مهم خود، كتاب في مايحتاج اليه‌ الكتّاب والعمّال من علم الحِساب اعداد منفى را ابداع كرد. او براى ناميدن اين اعداد از واژه «دِين» استفاده كرده است.

در ديگر بخش هاى دانش رياضى، از جمله مثلثات و هندسه نيز دانشمندان اسلامى آراى گران‌بهايى از خود به يادگار گذاشتند. در اين بخش ها، دانشمندان اسلامى افزون بر بسط روابط حاكم بر مثلثات يونانى، خود به يافته‌هاى جديدى نيز رسيدند، يكى از اين يافته‌ها در كتاب شكل القطاع از خواجه نصيرالدين طوسى متبلور مى‌شود.

در اين كتاب، طوسى به ‌درستى و زيركى از تقابل دو بخش از علم مثلثات سودجسته است، يكى نقش جدول هاى مثلثاتى در تبديل زوايا و اندازه‌هاى زاويه‌هاى شكل هاى هندسى و ديگر، مفروضات برآمده از مثلثات يونانى. در تبيين شكلهاى هندسى، خواجه در شكل القطاع با استفاده از كوشش دانشمندان پيش از خود در بسط و گسترش جدول هاى مثلثاتى به تبيين بسيار دقيقى از روابط حاكم بر زوايا در اشكال هندسى پرداخته است.

نمونه برجسته اين دقت و گسترش مثلثات، به‌ ويژه در حوزه علم كره‌ها كه خواجه نصير نيز چند بخش از كتاب شكل القطاع خود را بدان اختصاص داده، تبديل مختصات هندسه سه بعدى به هندسه دو بعدى است. اين كار به ‌ويژه در ساخت انواع اصطرلابها حايز اهميت است.[۴]

دوره تاريخ رياضيات اسلامى از سده دوم هجرى تاكنون، رياضى‌دانان بسيارى را به تاريخ علم جهان هديه داده است. سياهه بزرگى از نام اين افراد مى‌توان عرضه كرد، از جمله:

احمد بن عبداللَّه مروزى، ملقب به «حبش حاسب»، صاحب كتاب فى معرفةالكرة والعمل بها؛ ابوالعباس فضل ‌بن حاتم نيريزى، صاحب كتاب مشهور شرح اصول اقليدس؛ موسى‌ بن شاكر، يكى از سه برادرى كه به «بنو موسى» مشهورند، صاحب كتاب معرفة مساحةالاشكال البسيطة والكروية؛ ابوالحسن ثابت‌بن قرّه حرانى، كه آثار متعددى در زمينه رياضيات نوشته است؛ از جمله كتاب فى الاعداد المتحابّة؛ ابوالفتح محمد بن قاسم اصفهانى، صاحب كتاب تلخيص المخروطات؛ ابوجعفر محمد بن حسين صاغانى خراسانى، صاحب تفسير صدرالمقالة العاشرة من كتاب اقليدس، ابوسعيد احمد بن محمدبن عبدالجليل سجزى، صاحب كتاب فى مساحة الاكَر بالاكر؛ ابوالحسن على‌ بن احمد نسوى، صاحب كتاب الاشباع فى شرح الشكل القطاع، ابوحاتم مظفر بن اسماعيل اسفزارى، صاحب كتاب اختصار فى اصول اقليدس؛ غياث الدين جمشيد كاشانى، پژوهشگر بسيار مهم و بزرگ و صاحب آثار متعدد از جمله مفتاح الحساب و رساله محيطيه؛ علاءالدين على‌ بن محمد سمرقندى، مشهور به ملا على قوشچى، صاحب رساله محمديه؛ و البته بسيارى افراد ديگر كه ذكر نام آنها در اين بخش نمى‌گنجد.

پانویس

  1. لغت نامه دهخدا، ذیل واژه علم.
  2. علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌، ص 35 تا 37.
  3. ابوالقاسم قربانى، زندگينامه رياضيدانان دوره اسلامى، تهران، مركز نشر دانشگاهى، 1365، ص 246-238.
  4. همان، ص 508-486.


منابع

  • لغت نامه دهخدا، ذیل واژه علم
  • علی اکبر ولایتی، فرهنگ و تمدن اسلامى‌